22 research outputs found

    Multidisciplinary Control of a Sparse Interferometric Array Satellite Testbed

    Get PDF
    The MIT Adaptive Reconnaissance Golay-3 Optical Satellite (ARGOS) is a wide-angle Fizeau interferometer spacecraft testbed. Designing a space-based interferometer, which requires such high tolerances on pointing and alignment for its apertures, presents unique multidisciplinary challenges in the areas of structural dynamics, controls and multi-aperture phasing active optics. In meeting these challenges, emphasis is placed on modularity in spacecraft subsystems and optics as a means of allowing expandability and upgradeability. For the interferometer to function properly, unique methods of coherent wave front sensing are developed and used for error detection in control of the Fast Steering Mirrors (FSMs). The space environment is simulated by floating ARGOS on a frictionless air-bearing that allows it to track fast moving satellites such as the International Space Station (ISS), planets or point stars. A System Identification is performed on ARGOS to determine its dynamic properties and to design optimal controllers for the Attitude Control System (ACS). ACS sensors include an electronic compass with a 2-axis tip-tilt sensor, a viewfinder camera with centroiding algorithm, and a 3-axis rate gyroscope. Nonlinear, quaternion-based control is employed using reaction wheels as the spacecraft's actuators

    Semiconductor Spintronics

    Full text link
    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin or magnetism. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin injection, Silsbee-Johnson spin-charge coupling, and spindependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent nteraction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief reviews of relevant recent achievements in the field.Comment: tutorial review; 342 pages, 132 figure

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Blood pressure reduction and control with fixed-dose combination perindopril/amlodipine: A Pan-Hellenic prospective observational study

    No full text
    Introduction: Hypertension guidelines recommend fixed-dose combinations for enhanced blood pressure (BP) reduction and compliance. The objective of this study was to assess the effectiveness and safety of fixed-dose perindopril/amlodipine combination in reducing and controlling BP in Greek hypertensive patients, as well as the effect of baseline BP and added cardiovascular risk on BP reduction. Methods: This 6-month prospective observational study included male or female patients a3/418 years with essential hypertension prescribed fixed-dose combination perindopril/amlodipine. BP was measured at baseline and 3 and 6 months. Baseline cardiovascular risk and treatment compliance were also assessed. Results: In 2231 per protocol patients, mean systolic BP decreased from 157.0±15.4 mm Hg to 129.0±7.9 mm Hg after 6 months, and diastolic BP from 91.5±10.1 to 78.8±6.7 mm Hg (both p < 0.001). BP control was achieved in 84.8% at 6 months. Patients with higher baseline added cardiovascular risk or BP had greater BP reduction (p < 0.001). Compliance was good (97.1% took treatment "every daya" or "quite oftena") and few (n = 27; 1.2%) discontinued treatment prematurely due to adverse events. Conclusions: Fixed-dose perindopril/amlodipine safely and effectively reduced high BP in real-life practice, achieving BP control in most patients. About half of Greek hypertensive patients have high/very high added cardiovascular risk. © 2015 The Author(s)

    Dasistoma macrophylla

    No full text
    corecore